Constrained Initialization of the Simultaneous Localization and Mapping Algorithm
نویسندگان
چکیده
In this paper we present a novel feature initialization technique for the Simultaneous Localization and Mapping (SLAM) algorithm. The initialization scheme extends previous approaches for identifying new confirmed features and is shown to improve the steady-state performance of the filter by incorporating tentative features into the filter as soon as they are observed. Constraints are then applied between multiple feature estimates when a feature is confirmed. Observations that are subsequently deemed as spurious are removed from the state vector after an appropriate timeout. It is shown that information that would otherwise be lost can therefore be used consistently in the filter. Results of this algorithm applied to data collected using a submersible vehicle are also shown. KEY WORDS—simultaneous localization and mapping, feature initialization, constraint, submersible
منابع مشابه
Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملEffects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملDetermining an Initial Image Pair for Fixing the Scale of a 3D Reconstruction from an Image Sequence
Algorithms for metric 3d reconstruction of scenes from calibrated image sequences always require an initialization phase for fixing the scale of the reconstruction. Usually this is done by selecting two frames from the sequence and fixing the length of their base-line. In this paper a quality measure, that is based on the uncertainty of the reconstructed scene points, for the selection of such ...
متن کاملMonocular Visual-Inertial SLAM: Continuous Preintegration and Reliable Initialization
In this paper, we propose a new visual-inertial Simultaneous Localization and Mapping (SLAM) algorithm. With the tightly coupled sensor fusion of a global shutter monocular camera and a low-cost Inertial Measurement Unit (IMU), this algorithm is able to achieve robust and real-time estimates of the sensor poses in unknown environment. To address the real-time visual-inertial fusion problem, we ...
متن کاملMultiple Relative Pose Graphs for Cooperative Mapping
This thesis describes a new representation and algorithm for cooperative and persistent simultaneous localization and mapping (SLAM) using multiple robots. Recent pose graph representations have proven very successful for single robot mapping and localization. Among these methods, iSAM (incremental smoothing and mapping) gives an exact incremental solution to the SLAM problem by solving a full ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 22 شماره
صفحات -
تاریخ انتشار 2003